Objective: To get familiarised with the, subjectively chosen, most important concepts of electronic structure theory from a computational chemistry viewpoint. After these lectures, the student will hopefully go for lunch with at least a rudimentary exposure to different approximations to the molecular Schrödinger equation, and the alternative theory of density functionals.
Part I: Wave-function based *ab initio* computational chemistry

The time-independent Schrödinger equation

- The basis of the first part of today is the **molecular Schrödinger equation**:

\[\hat{H}\Psi(R_1, R_2 \ldots R_N, r_1, r_2 \ldots r_n) = E\Psi(R_1, R_2 \ldots R_N, r_1, r_2 \ldots r_n) \]

- \(\hat{H} \) is the *Hamiltonian operator*
- \(\Psi \) is the *wave function*
- \(E \) is the energy of the system
- \(R \) are the coordinates of the nuclei, and \(r \) the coordinates of the electrons

- The Schrödinger equation is a many-body equation
 - cannot be solved analytically for more than two particles
- Computational chemistry is to a large extent based on different methods of **approximately** solving the molecular Schrödinger equation.

- Before looking at various theories of how to approximate the SE, we need to be aware that what we will be doing is *approximating an approximation itself!*
Initial approximations

The following **approximations of nature** are invoked already before the computational approximations; nothing we learn today is even in principle rigorously true

1. The Schrödinger equation is **non-relativistic**
 - To account for relativity, the Dirac equation should be used
 - In effect an assumption that the speed of light is infinite

2. The nuclei are considered to be **point-like**
 - In reality, nuclei naturally have a volume

3. The time-independent SE is, well, **time-independent**
 - Time doesn’t actually stand still

4. We will employ the **Born-Oppenheimer approximation**
 - Due to the large mass-difference between nuclei and electrons, their motion can be considered separately
 - In effect an assumption that the masses of nuclei are infinite
Initial approximations

In addition, we *approximate the true environment* of our systems

1. The molecules are considered *independent entities* experiencing no outside interaction
 - Even in gas-phase, this is not really true, our universe consists of more than one molecule
 - Often real-world chemistry takes place in solution, where the interaction between the molecule under study and its environment is of major importance
 - This will be addressed later on during the School

2. We will work at **zero Kelvin**
 - Doesn’t exist; temperature effects can be *very* important
 - Also this aspect will be addressed later on

Approximate lecturing

Next, we will go through a few central concepts of electronic structure theory, concentrating on the implications and practical consequences

- Most of the mathematics and proofs will be skipped
- See the *Further reading* section for good literature that includes essential derivations and maths
The variational principle

- First thing to note, there are several (infinite) solutions to the Schrödinger equation, corresponding to different wave functions and their corresponding energies:

\[\hat{H}\Psi_i = E_i\Psi_i, \quad i = 0, 1, 2, 3, \ldots, \infty \]

- By convention, we assume the solutions are energy ordered, so that \(\Psi_0 \) corresponds to the lowest energy solution with \(E_0 \). As a side note, quantum mechanics makes \(E_0 \) have a finite value above \(-\infty\).

- Further, the solutions are orthogonal and normalised (orthonormal):

\[\langle \Psi_i | \Psi_j \rangle = \delta_{ij} \]

- The solutions to the SE form a complete set, basis, so any approximate wave function \(\Phi \) can be expressed, expanded, in the exact solutions, and have a defined energy \(W \):

\[\Phi = \sum_{i=0}^{\infty} a_i \Psi_i \]

\[W = \frac{\langle \Phi | H | \Phi \rangle}{\langle \Phi | \Phi \rangle} \]

- The **variational principle** states that the energy \(W \) of an approximate wave function is always higher or equal to the lowest energy state \(E_0 \); if equal, then \(\Phi \) is actually the ground state wave function \(\Psi_0 \).

- The principle makes it possible to look for the ground state solution mathematically: Almost any function can approximate the wave function we are looking for, and an initial guess can be refined by distorting the **trial wave function** by looking for minima for the energy expression!
Size-consistency

- A given electronic structure method is **size consistent** if the computed energy of N “infinitely” separated, and thus non-interacting monomers is N times that of the individual monomers
 - Non-size consistency leads to poor description of dissociation energies
 - Problem increases with system size; with large systems, the correlation energy of subsystems decrease towards zero

The Born—Oppenheimer approximation

- The BO approximation is based on the **usually good approximation** that the motion of electrons is *instant* upon rearrangement of the atomic centres in our molecule due to the large mass difference
 - In other words, the nuclear velocities are much smaller than the electron velocities; no coupling between the velocities of the two
 - The electronic wave function depends only **parametrically** on the atomic coordinates
The Born—Oppenheimer approximation

- This allows us to separate the Schrödinger equation into a nuclear wave function Φ and an electronic wave function Ψ:

$$
\Psi(R_1, R_2 \ldots R_N, r_1, r_2 \ldots r_n) = \Phi(R_1, R_2 \ldots R_N)\psi(r_1, r_2 \ldots r_n)
$$

- The BO approximation also gives us the concept of molecular structure; without it, definite bond lengths and such would have little meaning.

- After the BO approximation, our Hamiltonian today takes the following form (in atomic units):

$$
\hat{H} = -\frac{1}{2} \sum_{i}^{n} \nabla_i^2 - \sum_{i}^{n} \sum_{I}^{N} \frac{Z_I}{r_{ij}} + \sum_{i<j}^{n} \frac{1}{r_{ij}} + V_{\text{nuc}}^{\text{nuc}} + V_{\text{ee}, \text{electron-electron}} + V_{\text{ne}, \text{electron-nucleus}} + V_{\text{nn}, \text{nucleus-nucleus}}
$$

T_e, electronic kinetic energy

V_{ee}, electron-electron repulsion

V_{nn}, nucleus-nucleus repulsion

V_{ne}, electron-nucleus attraction
The Hartree equations

- Soon after the introduction of the Schrödinger equation, Hartree proposed that the electronic wave function could be approximated by assuming that, in addition to the nuclei, the individual electrons could be separated as well.
- Thus, the many-electron wave function would be a product of one-electron wave functions ϕ:

$$
\psi(\mathbf{r}_1, \mathbf{r}_2 \ldots \mathbf{r}_n) = \phi_1(\mathbf{r}_1)\phi_2(\mathbf{r}_2) \ldots \phi_n(\mathbf{r}_n)
$$

- This wave-function completely ignores the electron-electron repulsion.
- To account for this, the Hartree equations assume that the repulsion between electron i and all the other electrons can be accounted for by only considering the average positions of all other electrons in the molecule; an individual electron moves in a mean field $V_{i,\text{eff}}$ of all other electrons:

$$
\left(-\frac{1}{2} \nabla_i^2 - \sum_{I}^{N} \frac{Z_I}{r_{iI}} + V_{i,\text{eff}}\right)\phi_i = E_i \phi_i
$$

- The solutions of the individual Hartree equations depend on the solutions of all the other equations via $V_{i,\text{eff}}$. Thus, they have to be solved iteratively.
The Self-Consistent Field (SCF) method

- First, an initial guess for the individual one-electron wave functions is needed
- After this, iterate until all ϕ_i stay the same, that is, a self-consistent field has been achieved:

http://dx.doi.org/10.1017/S0305004100011920
The Hartree—Fock method

- The Hartree product wave-function violates the Pauli principle, it is not **antisymmetric**, that is, the wave function doesn’t change sign upon swapping two electrons (which it should)
- Fock noticed and fixed this by expressing the wave function as a **Slater Determinant** (SD)

\[
\psi(\mathbf{r}_1, \mathbf{r}_2 \ldots \mathbf{r}_n) = \frac{1}{\sqrt{n!}} \begin{vmatrix}
\phi_1(e_1) & \phi_2(e_1) & \ldots & \phi_n(e_1) \\
\phi_1(e_2) & \phi_2(e_2) & \ldots & \phi_n(e_2) \\
\phi_1(e_n) & \phi_2(e_n) & \ldots & \phi_n(e_n)
\end{vmatrix}
\]

- The Hartree—Fock energy of an SD can be obtained from

\[
E = \sum_{i=1}^{N_{\text{elec}}} h_i + \frac{1}{2} \sum_{i=1}^{N_{\text{elec}}} \sum_{j=1}^{N_{\text{elec}}} (J_{ij} - K_{ij}) + V_{nn}
\]

- Without further details, let’s just point out two of the terms
 - \(J_{ij} \) is obtained by the **Coulomb operator** and is composed of two-electron terms, integrals, arising from the Coulomb repulsion between electrons
 - \(K_{ij} \) is obtained by the **exchange operator** and is composed of two-electron terms having no classical counterpart. Among other things, \(K \) ensures antisymmetry and removes the self-interaction arising from the \(J_{ii} \) integrals.
Linear Combination of Atomic Orbitals (LCAO)

- What are the one-electron wave-functions ϕ_i on the preceding slides?
- Considering the simplest case, one-electron, hydrogen-like atoms, it is easy to be convinced that the solutions are atomic orbitals (AOs)
- For more complex cases, with more atoms and electrons, it is reasonable to expect some similarity to atomic orbitals to be transferred
- In fact, the solutions to the HF equations gives molecular orbitals
- A simple first guess is then to construct the MOs ϕ_i from the AOs χ_μ as
 - The sum over μ runs over all k atomic orbitals of the atoms
 - The coefficients c_i are optimised to minimise the total energy
 - For H$_2$, this simple minimal basis set leads to two HF orbital solutions based on the 1s AOs:

$$\psi_1 = \sigma = \frac{1}{\sqrt{2}} (\chi_1^A + \chi_1^B)$$
bonding orbital (occupied)

$$\psi_2 = \sigma^* = \frac{1}{\sqrt{2}} (\chi_1^A - \chi_1^B)$$
antibonding orbital (virtual)

$$\phi_i = \sum_{\mu} c_{i\mu} \chi_\mu$$
Hartree—Fock orbitals

- In effect, what the HF SCF procedure produces is, in addition to the energy, a set of molecular orbitals.
- The number of orbitals depends on the number of **basis functions**.
 - The minimal basis consists of only the atomic orbitals of the constituent atoms, very crude.
 - For the exact solution of the HF equations, that is, the lowest HF energy possible, in principle an **infinite** amount of basis functions is needed.
 - In practice, a balance has to be struck, more on that later.
- The lowest energy HF solution is then obtained by the **aufbau principle**, by inserting the electrons into the lowest energy orbitals (one of each spin per orbital).
- Orbital diagram for a reasonably large basis set for H₂:
Usefulness of Hartree—Fock

- The Hartree—Fock wave function is rather well behaved, but just an approximation!
 - It is variational and size consistent
- The HF energy usually corresponds to around 99% of the true total energy of the system
 - Due to the variational principle, the HF wave function is too high in energy
- The main approximation of HF is that the electrons only see a mean-field of the $N-1$ other electrons
- In reality, the motions of the electrons are correlated, instantly avoiding each other
 - This means that the electrons actually are further apart from each other than what the HF orbitals describe
 - Being further apart decreases the electron—electron repulsion
 - Thus, electron correlation effects lower the energy

- Although only ~1% of the total true energy, the correlation energy is very important for chemistry
 - The total energy is a very large number, so 1% is chemically a significant energy
 - Example: the helium atom; just two electrons and one nucleus
 - HF energy: -7513 kJ/mol
 - exact E: -7624 kJ/mol, HF error 110 kJ/mol!

- → Hartree—Fock is not that useful for chemical applications!
Usefulness of Hartree—Fock

- Hartree—Fock is not that useful for chemical applications
- It does provide reasonable chemical structures, but thermochemistry is bad
 - Sometimes error cancellation helps, a bit
- Today, HF is mainly used as a starting point for correlated wave-function methods
 - Also as an ingredient in Density Functional Theory (DFT) discussed in Part II
- A recently presented HF-based method might turn out to be an exception:

HF-3c

- Parameterised scheme based on minimal HF calculations including three main corrections:
 - Basis set superposition correction
 - Dispersion interactions
 - Short-ranged basis set incompleteness effects
- Intended for “the computation of structures, vibrational frequencies, and noncovalent interaction energies in huge molecular systems”
- For a “correlated version” (next section), look up PBEh-3c: http://dx.doi.org/10.1063/1.4927476
Electron correlation

- The Hartree–Fock wave function is usually considered to contain no electron correlation effects
 - Pauli correlation *is* already imposed by the exchange operator
- The missing (negative) energy is thus *defined* to be the correlation energy \(E_{\text{corr}} = E_{\text{exact}} - E_{\text{HF}} \)
- Correlation arises from the instantaneous interaction between electrons
- correlation is often divided into two main flavours; the division is all but rigorous and still discussed
 - Not that surprising as only the total energy is an observable; even the division between HF and correlation energy is more or less a mathematical construct as opposed to real physics

1. **Dynamic correlation**
 - Usually considered to be short-range, for example between electrons in the same orbital
 - Example: \(E_{\text{corr}} \) of the helium atom almost purely dynamical
 - Characterised by the HF wave function being qualitatively, if not quantitatively right
 - Most efficiently recovered by single-reference correlation methods

2. **Static Correlation**, aka non-dynamic correlation, left-right correlation
 - Usually considered to be long-range
 - Example: \(E_{\text{corr}} \) of stretched \(\text{H}_2 \) almost purely static
 - Characterised by near-degenerate states and the HF solution being even qualitatively wrong
 - Most efficiently recovered by multi-reference correlation methods
Second order Møller—Plesset perturbation theory (MP2)

- The simplest commonly used method for introducing electron correlation
- Based on Many-Body Perturbation Theory (MBPT), which, in short, requires that a good zeroth-order solution to an eigenvalue problem is known, and that the exact solution is only a small perturbation upon that: \(\hat{\mathbf{H}} = \hat{\mathbf{H}}_0 + \lambda \hat{\mathbf{H}}' \)

- In MP2, the zeroth order solution is the Hartree—Fock wave function
 - If HF is very wrong, MP2 will be very wrong as well. Example: transition metals

- The MP2 correlation energy depends on the HF orbitals \(\phi_i \) and their corresponding eigenvalues, orbital energies \(\varepsilon_i \). Note that both occupied and virtual orbitals are included

\[
E(\text{MP2}) = \sum_{i<j} \sum_{a<b} \left(\langle \phi_i \phi_j | \phi_a \phi_b \rangle - \langle \phi_i \phi_j | \phi_b \phi_a \rangle \right) \frac{\varepsilon_i + \varepsilon_j - \varepsilon_a - \varepsilon_b}{\varepsilon_i + \varepsilon_j - \varepsilon_a - \varepsilon_b}
\]

- The denominator contains the energy difference between occupied and virtual orbitals
 - In systems with a small or vanishing HOMO-LUMO gap, problems!
Second order Møller—Plesset perturbation theory (MP2)

- With modern software, computing the MP2 correction is usually faster than obtaining the HF reference solution
- Even for systems that are “well-behaved”, the MP2 correlation energy is not that good, though
 - It is size-consistent
 - It is not variational

SCS-MP2

- Instead of using standard MP2, I recommend using the semi-empirical Spin Component Scaled version, SCS-MP2
- Based on the observation that low-level correlation methods are biased towards parallel electrons, accompanied by an underestimation of E_{corr} between anti-parallel electrons
- “Fixed” by scaling the anti-parallel (opposite-spin) contribution by something > 1 and the parallel (same-spin) contribution by something < 1. Standard values:
 - $p_S = 6/5, p_T = 1/3$
- Works notably better than standard MP2 at identical computational cost!
SOS-MP2

- Scaled Opposite-Spin MP2, **SOS-MP2** builds on the idea of SCS-MP2, noting that the same-spin scaling factor in SCS-MP2 is small, 1/3.

Question: What happens if the same-spin scaling is set to zero? (And the OS scaling increased to 1.3)

Answer: The computations can be performed faster (not directly because of less stuff to compute, but due to the ability to compute the remaining stuff more efficiently)

- (Somewhat limited) experience indicates that the results are not as good as for SCS-MP2, but still better than standard MP2

Higher order MP

- While formulated, *higher order Møller—Plesset is seldom used* anymore
 - MP3 usually *worse* than MP2
 - MP4 already very expensive
 - The MP\(n\)-series often diverges:
 - http://dx.doi.org/10.1063/1.481611
Configuration Interaction (CI)

- Of the correlated methods, the **configuration interaction** (CI) treatment is the conceptually simplest.
- We again start from the HF solution, configuration, so like MPn, it’s a **single-reference method**.
- The HF SCF equations give us a set of M HF (spin) orbitals, with M dependent on the **basis set size**.
 - Of these, the N lowest are occupied, with $N = \text{the number of electrons}$.
 - The remaining $M-N$ orbitals are unoccupied, virtual.
- In CI, we improve upon the wave function by making a superposition of the ground state HF configuration, and configurations constructed by “exciting” electrons from the GS, that is, moving electrons from the occupied (i, j, \ldots) to the virtual (a, b, \ldots) orbitals.

\[
\Psi_{\text{CI}} = c_0 \psi_{\text{HF}} + \sum_{i}^{\text{occ}} \sum_{a}^{\text{vir}} c_i^a \psi_i^a + \sum_{i,j}^{\text{occ}} \sum_{a,b}^{\text{vir}} c_{ij}^{ab} \psi_{ij}^{ab} \\
+ \sum_{i,j,k}^{\text{occ}} \sum_{a,b,c}^{\text{vir}} c_{ijk}^{abc} \psi_{ijk}^{abc} + \sum_{i,j,k,l}^{\text{occ}} \sum_{a,b,c,d}^{\text{vir}} c_{ijkl}^{abcd} \psi_{ijkl}^{abcd} + \cdots = \sum_i c_i \psi_i
\]

- The coefficients c are optimised with the orthonormality constraint of the CI wave function.
- The orbitals that make up the individual ψ stay the same as in the HF reference.
Configuration Interaction (CI)

- Depending on how many electrons are “excited” out of the HF configuration at a time, we have single (S), double (D), triple (T), ... excitations in the CI description, giving CIS, CID, CISD, etc. levels of theory.
- If all possible excitations are considered, the method is called Full CI (FCI) which, within a given basis set, is the most complete solution to the Schrödinger equation obtainable.
 - With a hypothetical infinite basis set (of properly chosen basis functions) we would have Complete CI, which would be the exact solution to the Schrödinger equation.

![Diagram showing various types of excitations in CI]
Configuration Interaction (CI)

- The classic example of how electron correlation lowers the energy, \(H_2 \) in a minimal basis:
 - The Hartree—Fock configuration has both electrons in the bonding \(\sigma \) orbital
 - The anti-bonding \(\sigma^* \) orbital is virtual
 - When doing CI, we get a mixture of the two configurations
 - The \(\sigma^* \) orbital has a nodal plane between the two hydrogens; thus, with the total wave function containing parts of this configuration, the electrons are on average further apart compared to the HF configuration → lower energy, better WF
Configuration Interaction (CI)

- Today, CI is not that extensively used
 - (truncated) CI is **variational**
 - But it is **not size consistent** (with the exception of FCI)

- The non-size-consistency is easily demonstrated for two non-interacting H_2 molecules at CISD level
 - For non-interacting systems A and B, size consistency requires $E(A, B) = E(A) + E(B)$
 - When $A=B=\text{H}_2$, we note that CISD is equivalent to FCI; H_2 has two electrons, and the maximum, full excitation level is thus also two:
 - With **two** H_2 fragments at all separations, we have **four** electrons: **not all configurations can be constructed**!
 - That would require CISDTQ
 - For example, the configurations where both electrons of both fragments have been excited are completely missing

- **With increasing systems size, proportionally less and less of the correlation energy is recovered!**
Coupled Cluster (CC)

- The coupled cluster wave function is defined as
 \[\Psi = e^{\hat{T}} \psi_{HF} \]
 \[\hat{T} = \hat{T}_1 + \hat{T}_2 + \cdots + \hat{T}_n \]
 \[T_1 \Phi_0 = \sum_{i} \sum_{a} t_i^a \Phi_i^a \]
 \[T_2 \Phi_0 = \sum_{i<j} \sum_{a<b} t_{ij}^{ab} \Phi_{ij}^{ab} \]

- The excitation operator \(T \) constructs *all possible excitations*
 - \(T_1 \) all single excitations, \(T_2 \) all double excitations, ...

- The main idea of CC is to include all corrections of a given type (S, D, T, ...) to *infinite order*

- **For comparison and clarity**, the now familiar CI wave function can be expressed as
 \[\Psi_{CI} = (1 + T)\Phi_0 = (1 + T_1 + T_2 + T_3 + T_4 + \cdots)\Phi_0 \]

- The truncated CID model, with just double excitations, thus takes the form \(\Psi_{CID} = (1 + T_2)\Phi_0 \)

- The Taylor expansion of the *exponential form of CC* gives the following for the corresponding doubles-only coupled cluster model, CCD:

 \[\Psi_{CCD} = e^{T_2} \psi_{HF} = \left(1 + T_2 + \frac{T_2^2}{2!} + \frac{T_2^3}{3!} + \cdots \right) \psi_{HF} \]
Coupled Cluster (CC)

- The CCD form nicely shows the **size consistency** of coupled cluster compared to configuration interaction
 - T_2 itself constructs all **connected double excitations**
 - T_2^2 generates **disconnected quadruple excitations**, in essence, the **simultaneous double excitations of two non-interacting electron pairs**
 - The absence of the T_2^2 term was the reason for non-size-consistency of CISD in the example of two separated H$_2$ molecules!
- Coupled cluster is **not variational**, though

The practical “gold standard for quantum chemistry” — CCSD(T)

- Of the truncated coupled cluster models, only CCSD can be semi-regularly employed; the scaling of the next level, CCSDT is already prohibitively steep for all but the smallest molecules
- The accuracy of CCSD is, however, not spectacular
 - Inclusion of connected triple excitations T_3 would be desirable, still chemically important!
- In the **CCSD(T)** model, the triples are added onto the CCSD solution using **perturbation theory**
 - **CCSD(T) is remarkably accurate** provided that a single-determinant reference is sufficient!
 - Error cancellation, the T contribution slightly overestimated, compensating for missing Q
 - Requires sufficiently large basis sets!
The practical “gold standard for quantum chemistry” — CCSD(T)

- Errors for a set of reaction enthalpies (kJ/mol) for different methods and basis sets (from Helgaker, Jørgensen, Olsen, “Molecular Electronic-Structure Theory”)
Really Quick CCSD(T): DLPNO-CCSD(T)

- **Domain based Local Pair Natural Orbital** coupled cluster method
DLPNO-CCSD(T)

- Localise orbitals; Compute pair-correlation energies ϵ_{ij} at MP2 level ($\Sigma \epsilon_{ij} = E_{corr}$); only compute CC correlation energies for the most strongly correlated pairs, estimate the rest with MP2.
- Further, consider only virtual orbitals with a significant occupation number, and again estimate the remaining correlation energy with MP2.

Sparta & Neese, Chem. Soc. Rev. 43 (2014) 5032:
Extrapolating the CC series towards FCI

- Having computed CCSD(T) energies, it is actually possible to get even better results for free
- **Goodson’s continued fraction** approach, CC-cf, extrapolates correlation towards FCI
 - Compare to extrapolating basis sets towards the complete basis set (CBS) limit

\[
\begin{align*}
\delta_1 &= E[\text{HF}] \\
\delta_2 &= E[\text{CCSD}]-E[\text{HF}] \\
\delta_3 &= E[\text{CCSD(T)}]-E[\text{CCSD}]
\end{align*}
\]

\[
E[\text{CC-cf}] = \frac{\delta_1}{1 - \frac{\delta_2/\delta_1}{1 - \delta_3/\delta_2}}
\]

- Robust combination for squeezing out highly accurate energies (when multi-reference is a non-issue)

- **Empirical**
- Due to non-variational nature of CC, *can* actually lead to total energies **further away** from FCI than CCSD(T).
Multi-reference methods

- For some systems, the Hartree—Fock solution is qualitatively wrong
- This happens when more than one electronic configuration are close in energy, near-degenerate
- Then, choosing just the absolutely lowest energy configuration is a very incomplete description

- Typical examples are molecules with different resonance structures, like ozone:

```
\begin{array}{c}
\text{O=O}^+ & \text{O}^- \\
\end{array}
\begin{array}{c}
\text{O} & \text{O} \cdot \\
\end{array}
```

- The two structures are described by two quite different Slater determinant configurations
 - One closed shell and one biradical
- **Transition metals**, with many d-orbitals, are also problematic; configurations with different d-orbital occupations can be very close in energy
- **Stretching bonds** also leads to near-degeneracy between orbitals that are occupied and virtual
- For these **multi-reference** systems, not only the HF solution is bad, *also correlated methods based on one reference wave function suffer!*
 - At heavy cost, that is, sufficiently high orders of excitation, this can be alleviated (FCI is FCI)
Multi-Configuration Self-Consistent Field (MCSCF)

- CI, where one optimises both the coefficients in front of the different configurations and the orbitals for each determinant
- In the ozone example, usually two determinants corresponding to the two resonance structures is sufficient

![Ozone molecule diagram]

- For more complex cases, deciding which configurations should be included becomes the problem and the art

Complete Active Space (CASSCF) and Restricted Active Space SCF (RASSCF)

- In CASSCF, one aims at including only the part of the orbital space where large differences between configurations occurs (for example the d-electron region for TMs). This is the active space
- Other orbitals, occupied and unoccupied, are inactive and kept as HF orbitals with double or zero occupancy
- Within the active space, a Full CI is performed
 - Sometimes called as full a CI as possible
Complete Active Space (CASSCF) and Restricted Active Space SCF (RASSCF)

- Full CI is very expensive even for a small number of orbitals
- RASSCF is a variation on CASSCF, where the orbital space is further divided into “less active” regions

CASPT2

- CASSCF can in practice seldom recover enough of the correlation energy
 - The active space is by necessity rather small
 - “Only” the static correlation part is efficiently recovered
 - If only one determinant is important, CASSCF is not much better than simple HF
- CASPT2 combines the static-correlation recovering CASSCF with dynamic-correlation recovering 2nd order perturbation theory

MRCI and MRCC

- Also CI and CC methods operating on a multideterminantal reference wave function have been developed