
19/07/2012

1

HMPP Directive Set

Hybridize your applications

ÅHMPP Concepts and Overview

ÅStarting with HMPP

ÅHMPP Runtime

ÅHMPP Toolchain

ÅRPC Sequence

ÅAdvanced Transfer Policy

ÅData Storage Policy

ÅGrouping Codelets

ÅRegions

ÅPartial Transfers

ÅOpenACC

www.caps-entreprise.com 2

Agenda

19/07/2012

2

HMPP

Concepts and Overview

3 www.caps-entreprise.com

Å Software should stay hardware-independent
o New architectures / languages to master

o Hybrid solutions evolve -> redo the work each time it changes

Å Some decisions have to be taken at runtime
o An hybrid application must be aware of its environment to get the

best of hardware resources

www.caps-entreprise.com 4

Hybrid Software for Hybrid Hardware

19/07/2012

3

What does HMPP offer?

Å HMPP is a glue between general

purpose programming and

hardware accelerators

o Abstract the architecture and

keep the application portable

o Manage data transfers

o Ensure application interoperability

& resource management

o Adapt to platform configuration

for easy deployment

www.caps-entreprise.com 5

ÅA set of directives to program
hardware accelerators
o Drive your HWAs, manage transfers

ÅA complete toolchain to build
manycore applications
o Build your hybrid application

ÅA runtime to adapt to platform
configuration

www.caps-entreprise.com 6

HMPP comes in 3 parts

19/07/2012

4

ÅThe directives

o Define hardware implementations of native functions (codelets)

o Indicate resource allocation and communication

o Ensure portability (future-proof) and default execution (no exit cost)

ÅThe toolchain

o Helps building manycore applications

o Includes compilers and target code generators

o Insulates hardware specific computations

o Uses hardware vendor SDK

ÅThe runtime

o Helps to adapt to platform configuration

o Manages hardware resource availability

www.caps-entreprise.com 7

HMPP comes in 3 parts

ÅHMPP drives all compilation

passes

o Host application compilation

ÅHMPP Runtime is linked to the

host part of the application

o Codelet production

ÅTarget code is produced

ÅA dynamic library is built

www.caps-entreprise.com 8

HMPP Compilation Paths

19/07/2012

5

www.caps-entreprise.com 9

HMPP Directives drive Hybrid Applications

HMPP Runtime

HWA Data

Directives

Codelet

HW-specific
code generation

HMPP
application

Directives

ÅSimple C example:

www.caps-entreprise.com 10

CODELET/CALLSITE

#pragma hmpp myCall codelet, target=CUDA, ...

void myFunc(int n, int A[n], int B[n])

{

 int i ;

 for (i =0 ; i <n ; ++ i)

 B[i] = A[i] + 1;

}

void main(void)

{

 int X[10000], Y[10000], Z[10000];

 é

 #pragma hmpp myCall callsite

 myFunc(10000, X, Y);

 ...

 myFunc(1000, Y, Z);

 é

}

19/07/2012

6

ÅSimple Fortran example:

www.caps-entreprise.com 11

CODELET/CALLSITE

!$hmpp myCall codelet, target=CUDA, ...

SUBROUTINE myFunc(n,A,B)

 INTEGER, INTENT(IN) :: n, A(n)

 INTEGER, INTENT(OUT) :: B(n)

 INTEGER :: i

 DO i =1,n

 B(i) = A(i) + 1

 ENDDO

END SUBROUTINE

PROGRAM test

 INTEGER :: X(10000), Y(10000), Z(10000)

 ...

 !$hmpp myCall callsite

 CALL myFunc(10000,X,Y)

 ...

 CALL myFunc(10000,Y,Z)

 ...

END PROGRAM

Å I can launch the execution of a remote function

o With a single code and data to compute

www.caps-entreprise.com 12

What can I do with my Hardware

Accelerator?

Code

Data

19/07/2012

7

Å I can parallelize tasks on multiple HWAs

o If I can split my problem into independents tasks

www.caps-entreprise.com 13

What can I do with my Hardware

Accelerator?

Code

Data

Å I can thread functions on a HWA

o To share data and save memory or transfers

www.caps-entreprise.com 14

What can I do with my Hardware

Accelerator?

Code

Data

19/07/2012

8

Å I can thread function queues on multiple HWAs

www.caps-entreprise.com 15

What can I do with my Hardware

Accelerator?

Code

Data

ÅHMPP provides the user with codelet control

o Choose when/how you want to allocate/release the hardware

o Choose when/how you want to launch the computations

o Choose when/how you want to start data transfers

ÅJust use HMPP directives!

o The candidate function has to be insulated and offloaded on the

remote hardware accelerator

o HMPP does it for you!

www.caps-entreprise.com 16

How do I do that?

19/07/2012

9

ÅPure function calls are offloaded on the accelerator

o These functions must fit some common constraints

ÅNo I/O on data

ÅNo access to global/volatile variables

ÅFixed number of arguments

ÅControlled by directives

o Pragmas in C

o Special comments in Fortran

ÅA unique label associates a set of directives

www.caps-entreprise.com 17

Basic Concepts

ÅA single line HMPP directive is:

ÅLong directives can be continued on multiple lines

www.caps-entreprise.com 18

General Syntax of the Directives (C)

#pragma hmpp myLabel command [, attribute]

#pragma hmpp myLabel command é &

#pragma hmpp & é &

#pragma hmpp & é

é

19/07/2012

10

ÅAny form of comment (F77, F90,...) starting with $hmpp

ÅLong directives can be continued on multiple lines

www.caps-entreprise.com 19

General Syntax of the Directives (Fortran)

!$ hmpp myLabel command [, attribute]

!$ hmpp myLabel command é &

!$ hmpp & é &

!$ hmpp & é

é

ÅDirectives are either standalone or precede the statement

they are related to

ÅDirective comments cannot end a statement line

ÅThe following Fortran comment is not a valid HMPP directive

ÅDirectives are case-insensitive

www.caps-entreprise.com 20

General Syntax of the Directives

PRINT *, ñHelloò !$ hmpp myLabel command

19/07/2012

11

Starting with HMPP

21 www.caps-entreprise.com

Å I want to launch the execution of a remote function

www.caps-entreprise.com 22

Addressing my Hardware Accelerator

Code

Data

19/07/2012

12

ÅThink codelet

o The candidate function has to be insulated and offloaded on the

remote hardware accelerator -> this is the codelet

o The HMPP directives provide the user with codelet control

ÅThere are two essential HMPP clauses to know:

o CODELET

ÅIdentify the native function to offload on a specific target

ÅOrder HMPP Codelet Generators to produce target code

o CALLSITE

ÅExplicit a call to this specialized function in the application

www.caps-entreprise.com 23

How can I do that?

ÅThe CODELET clause is placed just before the function

ÅThe CALLSITE clause is placed just before the call

statement

www.caps-entreprise.com 24

CODELET/CALLSITE

#pragma hmpp myLabel codelet é

void myFunc(é){

 é

}

é

#pragma hmpp myLabel callsite

myFunc(é);

é

19/07/2012

13

ÅAn HMPP program contains at least a pair of

CODELET/CALLSITE directives

o A CODELET is a specialization of a subroutine

o A CALLSITE is the specialization of a call statement

ÅEach CODELET may correspond to multiple CALLSITE

o But each CALLSITE belongs to a single CODELET

ÅA CALLSITE is identified by a unique label

www.caps-entreprise.com 25 9 dec. 2011

Ground Rules

ÅMultiple CALLSITEs:

www.caps-entreprise.com 26

Ground Rules

!$hmpp myCall codelet, target=CUDA, ...

SUBROUTINE myFunc(n,A,B)

 INTEGER, INTENT(IN) :: n, A(n)

 INTEGER, INTENT(OUT) :: B(n)

 INTEGER :: i

 DO i =1,n

 B(i) = A(i) + 1

 ENDDO

END SUBROUTINE

PROGRAM test

 INTEGER :: X(10000), Y(10000), Z(10000)

 ...

 !$hmpp myCall callsite, ...

 CALL myFunc(10000,X,Y)

 ...

 !$hmpp myCall callsite, ...

 CALL myFunc(10000,Y,Z)

 ...

END PROGRAM

19/07/2012

14

ÅHMPP can address several HWAs:

o C

o CUDA

o OpenCL

ÅBut how can I specialize my codelet?

o See the TARGET attribute

www.caps-entreprise.com 27

How do I choose the Accelerator?

ÅThe target attribute tells HMPP for which HWA the

specialized version must be generated:

www.caps-entreprise.com 28

Codelet Directive: the TARGET Attribute

#pragma hmpp myLabel codelet, target=CUDA

19/07/2012

15

HMPP Runtime

29 www.caps-entreprise.com

Å By default, a CALLSITE directive implements the whole RPC
sequence
o RPC = Remote Procedure Call

Å An RPC sequence consists in 5 steps:
o (1) Allocate the HWA and the memory

o (2) Transfer the input data: CPU => HWA

o (3) Compute

o (4) Transfer the output data: HWA => CPU

o (5) Release the HWA and the memory

www.caps-entreprise.com 30

CALLSITE: Full Remote Procedure Call

sequence

19/07/2012

16

ÅAt this time, RPC steps are

considered as synchronous

o Each step is blocking

o Application wait for the step

completion

www.caps-entreprise.com 31

Full RPC sequence

CPU GPU

1

2

3

4

5

ÅWhat HMPP does if a codelet file is not present at run

time?

o If the hardware accelerator is unavailable?

o If data allocation fails?

o If the data transfer fails?

o If the computation raises an error?

ÅThe native CPU version is used as a fallback

o This behavior can be inhibited with HMPPRT_NO_FALLBACK

ÅFallback is only possible until step 3 (computation) in

synchronous mode

o In asynchronous mode, a computation failure leads to the end of

the application

www.caps-entreprise.com 32

HMPP Fallback

19/07/2012

17

ÅSetting up environment variables

o Force permanent verbosity

o Prevent HMPP from default fallback behavior

o Add a new codelet repository

www.caps-entreprise.com 33

HMPP Environment

$ export HMPPRT_LOG_LEVEL=INFO

$ export HMPPRT_NO_FALLBACK=< errorCode >

$ export HMPPRT_PATH=< pathThatContainsHmgAndHmc >:$HMPPRT_PATH

ÅSpecify for which HWA a specialized version must be

generated

o No target mean no specialized code to generate

ÅMultiple targets are possible (selected in order)

o Then the following is the fallback of the previous one

www.caps-entreprise.com 34

CODELET Directive: multiple TARGETs

#pragma hmpp myLabel codelet, target=CUDA

#pragma hmpp myLabel codelet, target =CUDA:OpenCL

19/07/2012

18

ÅHMPP, let you apply an incremental method in your porting

process

o Use the attribute transfer to specify the policy of your arguments

o ATCALL means that the arguments will be transferred automatically at

every callsites

o Scalar will be transferred only in input

o Arrays will be transferred as input and output

ÅBe careful, if you forget to put the transfer policy :

o HMPP will use, by default, the HMPP2 policy (Deprecated)

o To keep for the retro-compatibility with HMPP-2

www.caps-entreprise.com 35

Basic Transfer Policy

#pragma hmpp myLabel codelet, target=CUDA, &

#pragma hmpp & args [*].transfer= atcall

Å HMPP directives are always related to a subroutine, whose arguments

can be referenced by:

o their codelet name

o their numeric rank starting from 0

o intervals of their ranks

o a combination of the previous methods

o The wildcard can also be used to select all the codelet arguments

www.caps-entreprise.com 36

Referencing Arguments in the Directives

args [x;y;z]

args [0;4;5;6]

args [0 - 2;3 - 6]

args [x;y;4 - 6]

args [*]

19/07/2012

19

ÅExample:

ÅWhich is equivalent to:

www.caps-entreprise.com 37

Referencing Arguments in the Directives

#pragma hmpp myLabel codelet, args[0- 1;2;v].transfer= atcall , &

#pragma hmpp & target=CUDA

void myFunc(int n, float a, float b, float v[n])

{

 for(int i=0 ; i<n ; ++i)

 v[i] = v[i] * a + b;

}

#pragma hmpp myLabel codelet, args [*].transfer= atcall , &

#pragma hmpp & target=CUDA

void myFunc(int n, float a, float b, float v[n])

{

 for(int i=0 ; i<n ; ++i)

 v[i] = v[i] * a + b;

}

ÅAttention! Arguments are referred upon their names in the

CODELETôs definition, even in the execution context

o Argumentsô properties are global, not restricted to where they are

written

Å If you are far from the CODELETôs definition, youôd prefer to

refer arguments by their ranks to prevent confusion

www.caps-entreprise.com 38

Referencing Arguments in the Directives

19/07/2012

20

Lab sessions
Hello World &

CODELET/CALLSITE

39 www.caps-entreprise.com

ÅHello world!

o Write your own ñHello world!ò program in C or Fortran

o Compile the application with the HMPP Toolchain

o Run the application

www.caps-entreprise.com 40

Lab session: My First steps with HMPP

19/07/2012

21

Å CODELET/CALLSITE directives

o Set CODELET and CALLSITE directives

o Compile the application with the HMPP Toolchain

o Run the application and observe the HMPP Runtime taking decisions

www.caps-entreprise.com 41

Lab session: CODELET/CALLSITE

HMPP Toolchain

42 www.caps-entreprise.com

19/07/2012

22

Å Installation on Linux

o On Linux (64bits)

o On Windows: coming soon

ÅEnvironment setup

www.caps-entreprise.com 43

HMPP Installation & Environment Setup

$./HMPPWorkbench - 3.0.0_x86_64.bin

 é follow the instructions

$ source / myHMPP_installDir/bin/hmpp - env.sh

$ source / myHMPP_installDir/bin/hmpp - env.csh

ÅHMPP applications consist of:

o The host application (binary)

ÅUse your common compiler (gcc, icc, iforté)

o The codelets

ÅLet the HMPP Code generator do it for you

www.caps-entreprise.com 44

HMPP Compilation Process

19/07/2012

23

ÅHMPP drives all compilation

passes

o Host application compilation

ÅHMPP Runtime is linked to the

host part of the application

o Codelet production

ÅTarget code is produced

ÅA dynamic library is built

www.caps-entreprise.com 45

HMPP Complete Application Compilation

$ hmpp gcc myProgram.c

ÅCompiling generated codelet files

ÅAll files are available for lecture/modification

o Codelets and main source files

www.caps-entreprise.com 46 9 dec. 2011

HMPP Generated Files

myProg.c

hmpp gcc saxpy1.c

myLabel

_cuca.hmg
a.out

myLabel

_cuda.hmg

.cu

myLabel

_cuda.hmg

.o

myProg.c

<codeletName >_<target >. hmg.< ext >

mycalc1_cuda.hmg.cu

mygroup_cuda.hmg

sgemm1_cuda.hmc

. ..

source codelet exec

19/07/2012

24

ÅHow do I split the building process of my application?

o Use HMPP toolchain to generate separately

ÅHost application

ÅCodelets

ÅThe compilation process can be split into:

o Host application compilation

o HMPP Codelet compilation (generate + compile)

o HMPP Codelet compilation (generate only)

o HMPP Codelet compilation (compile only)

www.caps-entreprise.com 47

HMPP Compilation Passes

ÅHMPP drives all compilation

passes

o Host application compilation

ÅHMPP Runtime is linked to the

host part of the application

o Codelet production

ÅTarget code is produced

ÅA dynamic library is built

www.caps-entreprise.com 48

HMPP Complete Application Compilation

$ hmpp gcc myProgram.c

19/07/2012

25

ÅMy application changed, but

not the codelets

o Codelet-off

o Codelets implementation remain

unchanged

o Only the host part of the

application is rebuilt

www.caps-entreprise.com 49

Host Application Compilation

$ hmpp -- codelet - off gcc myProgram.c

ÅOnly the code of my codelet

changed

o Codelet-build

o Codelets implementation is

updated

o The host part of the application

is unchanged

www.caps-entreprise.com 50

HMPP Codelet Build (Generate & Compile)

$ hmpp -- codelet - build gcc myProgram.c

19/07/2012

26

Å I want to take a look at a

codeletôs generated code

o Codelet-generate

o Codelets implementation is

updated, and code is available

for reading or modifications

o The codelet is not compiled

o The host part of the application

is unchanged

www.caps-entreprise.com 51

HMPP Codelet Build (Generate only)

$ hmpp -- codelet - generate gcc myProgram.c

Å I want to compile my modified

codelet

o Codelet-compile

o Codelet library is updated

o The host part of the application

is unchanged

o Other codelets are not modified

www.caps-entreprise.com 52

HMPP Codelet Build (Compile only)

$ hmpp -- codelet - compile myCodelet_target.ext

19/07/2012

27

Lab session

Compilation Passes

53 www.caps-entreprise.com

ÅCompilation modes:

o Entire application compilation (all-in-one)

o Host application compilation

o Build codelets only (all-in-one)

o Produce, then compile codelets

www.caps-entreprise.com 54

Lab session: Compilation Passes

19/07/2012

28

RPC sequence

55 www.caps-entreprise.com

Å CODELET : Specialize a subroutine

Å CALLSITE : Specialize a call statement

www.caps-entreprise.com 56

HMPP Directives Overview

19/07/2012

29

Å CODELET : Specialize a subroutine

Å CALLSITE : Specialize a call statement

Å SYNCHRONIZE : Wait for completion of the callsite

Å ACQUIRE : Explicit the HWA acquisition

Å RELEASE : Release HWA and its memory

Å ALLOCATE : Allocate memory for the grouplet arguments

Å FREE : Free memory for the grouplet arguments

Å ADVANCEDLOAD : Explicit data transfer CPU -> HWA

Å DELEGATEDSTORE : Explicit data transfer HWA -> CPU

Å GROUP : Define a group of codelets

Å RESIDENT : Declare a resident (global) variable

Å MAP : Map arguments together

» Directives in green are declarative

» Directives in blue are operational

www.caps-entreprise.com 57

HMPP Directives Overview

ÅA standalone CALLSITE directive implements the whole RPC

sequence

ÅWith ATCALL transfer policy, if you iterate on callsite all data

are transferred at each call to the callsite

www.caps-entreprise.com 58

Reminder

19/07/2012

30

ÅTo optimize HWA usage according to your application

algorithm, this RPC sequence can be split into several parts

www.caps-entreprise.com 59

Splitting the RPC sequence

Advanced Transfer Policy

60 www.caps-entreprise.com

19/07/2012

31

ÅThe transfer policy specifies when the data must be
transferred to and from the HWA

ÅHMPP2 (LEGACY)
o The original (deprecated) HMPP 2.x policy

ÅMANUAL
o A simple policy in which the data transfers are explicitly specified by

the user via dedicated directives

ÅATCALL
o A simple policy in which the data are systematically transferred at

CALLSITE

o ATFIRSTCALL

ÅThe data is transferred at the first CALLSITE occurrence

ÅAUTO
o An experimental ôautomatic' policy

 www.caps-entreprise.com 61 26 January 2012

Transfer Policy

ÅTo improve the transfer performance

o MANUAL transfer policy

o Manually manage the data transfer

ÅTo transfer data from/to the GPU only when the application

needs it

o ADVANCEDLOAD directives to upload data to the GPU

o DELEGATEDSTORE directives to download data from the GPU

www.caps-entreprise.com 62

Transfer Policy (1)

#pragma hmpp myLabel codelet, target=CUDA, &

#pragma hmpp & args [0].transfer= atcall , &

#pragma hmpp & args [1 - 3] .transfer =manual

19/07/2012

32

ÅHow to avoid transfers with ATCALL policy

o By default an array has ATCALL transfer policy

o But in C, an array declared as const is just transferred as input

o Here, inputVar will be only transfer as an input data

ÅTo transfer data only once at the first callsite

o Use the transfer policy ATFIRSTCALL

o Useful for constant data (coefficient, constant sizes, é)

www.caps-entreprise.com 63

Transfer Policy (2)

#pragma hmpp myLabel codelet, target=CUDA, &

#pragma hmpp & args [1].transfer= atcall , ...

Void myfunc (int size, const float* inputVar , ...)

#pragma hmpp myLabel codelet, target=CUDA, &

#pragma hmpp & args [0].transfer= atfirstcall , ...

Void myfunc (int size, const float input*, ...)

ÅAttached to the CODELET directive and used by CALLSITE

to realize the right steps in the RPC sequence

ÅThis attribute allows to specify if an argument is
o IN for an input (data needed on the HWA)

o OUT for an output (result to be sent back from the HWA)

o INOUT for both

Å In the RPC sequence
o IN and INOUT arguments are transferred in step (2)

o OUT and INOUT arguments are transferred in step (4)

www.caps-entreprise.com 64

CODELET Directive: the IO Attribute (1)

